
Getting Deep on Orchestration

Jeff
Nickoloff
Engineer, Author, and
Consultant

What is
orchestration?
Abstractions
Examples

Agenda

Components
and patterns
APIs
System of Record
Agents

Demo: Entropy
About failure
Architecture
Break stuff

High quality abstractions are force multipliers for communication and
reasoning about more complex (or potentially variable) ideas and
systems.

Using a computer or programming is an act of communication.

<tba> (Software that provides such an abstraction gives a user
amazing power.) Software like Docker.

About Abstractions

Orchestration
What is it anyway?

“Orchestrate (v):
to organize or plan
(something that is complicated).”

— Merriam-Webster

“Orchestrating (tv):
to arrange or combine so as to
achieve a desired or maximum effect.”

— Merriam-Webster

(for orchestral music uses see Podium)

A system that provides organization and planning
abstractions for other abstractions.

In the OSS world we have:
• Swarm
• Kubernetes
• Mesosphere

Orchestration Platform (Software)

(for orchestral music uses see Podium)

A system that provides organization and planning
abstractions for other abstractions.

Orchestration Platform (Software)

In the OSS world we have:
• Docker + Swarm + Compose + etcd / consul / zk
• Docker + Flannel + Systemd + etcd + kubelet + kube (api, scheduler,

controller-manager, proxy, DNS)
• Mesos + Marathon + Calico + zk

Force multiplying ideas: a few lower level examples

• Engine (runs containers)
• Cluster (nodes as an engine)
• Network (routing, overlay, etc)

• and network name resolution
• Volume (named sharable storage)

Abstractions

Force multiplying ideas: higher level examples

• Service (long running event handler)
• Job (process with a linear lifecycle)
• Feed (Job with an input document)
• Report (Job with an output document)
• Request (process a single request)
• Cron Job (run a periodic job)

Abstractions

Architecture
Platform components
and patterns

… probably many!

Users and other software compositions need some
means to interact with the orchestration platform.

• One or a collection of APIs
• Command Line Program
• Web or Native GUI

An Interface

Managed state of the platform

Accounting for entities (container, pod, service,
volume, etc) and their state.

Commonly provide:
• KV semantics
• Record observation (watches)
• Update / Delete semantics with fencing tokens
• Distributed locks
• HA with strong consistency (Paxos / Raft)

System of Record

API’s provide interfaces between the platform and users
or other tools.

Control loops are the platform’s automata.

• Passively react to state changes
• Manage system state based on active monitoring
• Might require leadership election for HA

Agents / Control Loops

Event driven agents that coordinate changes in the system

• Container (re)scheduler
• Cluster node registrar
• Service node registrar
• Low entropy network registrar
• Local supervisor / init
• Service controller
• Job controller
• Report workflow controller
• Feed workflow controller
• Distributed cron controller

Agents / Control Loops

Event driven agents that coordinate changes in the system

• State Observation
• Feedback for control loops

• Entity Lifecycle Graph
• Registration and Discovery

• Route to an IP
• Engine in a cluster
• Replica of a service
• Endpoint of a service

Patterns

Getting dirty

<insert illustration of a Swarm cluster>
<insert illustration of a Kubernetes cluster>
<insert illustration of a Mesosphere cluster>

Deep Dive: Cluster

Even more examples

<tba>

Deep Dive: Service

An Example
Demo a new abstraction:
Entropy

A powerful and complex idea

Build confidence in complex distributed systems by injecting
realistic failures and comparing operations against a steady state.

• http://principlesofchaos.org
• Failure mode and effects analysis
• Netflix / SimianArmy

Failure Injection

… and container based platforms

All container platforms (clustered or not):
• enable high-entropy systems
• add new components and failure modes
• provide new mechanisms for handling failure

__ extension point, failure injection interface (the kernel), cross
cutting concern

Failure Injection

An orchestration abstraction for failure injection

Features:
• Probabilistic failure injection policies
• Failure modes

• Latency, partition, GC pause, etc
• Applied to existing containers filtered by label
• An event stream
• Notifications
• Integrates with the Docker API

Project: Entropy

An orchestration abstraction for failure injection

Components:
• Microservice API
• CLI
• Policy manager (control loop)
• Failure injection agents (pluggable)

On GitHub: __ insert URL

Project: Entropy

Demo Slide

$ # Container platform is running. Start a service.
$ docker-compose up -d -p election -f election.yml
$ # Start the entropy platform
$ docker-compose up -d -p entropy -f entropy.yml
$ # Define a policy
$ entropy -H $DOCKER_HOST run \
 -f 1s -p .1 \
 -t servicename=voter \
 recv_drop

Thank you!
Checkout:
 github.com/buildertools/entropy

