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About Abstractions

High quality abstractions are force multipliers for communication and
reasoning about more complex (or potentially variable) ideas and
systems.

Using a computer or programming is an act of communication.

<tba> (Software that provides such an abstraction gives a user
amazing power.) Software like Docker.
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“Orchestrate (v):
to organize or plan
(something that is complicated).”

— Merriam-Webster




“Orchestrating (tv):
to arrange or combine so as to
achieve a desired or maximum effect.”

— Merriam-Webster




Orchestration Platform (Software)

(for orchestral music uses see Podium)

A system that provides organization and planning
abstractions for other abstractions.

In the OSS world we have:
« Swarm

 Kubernetes

« Mesosphere
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Orchestration Platform (Software)

(for orchestral music uses see Podium)

A system that provides organization and planning
abstractions for other abstractions.

In the OSS world we have:

 Docker + Swarm + Compose + etcd / consul / zk

 Docker + Flannel + Systemd + etcd + kubelet + kube (api, scheduler,
controller-manager, proxy, DNS)

 Mesos + Marathon + Calico + zk
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Abstractions

Force multiplying ideas: a few lower level examples

 Engine (runs containers)
» Cluster (nodes as an engine)
* Network (routing, overlay, etc)
* and network name resolution
 Volume (named sharable storage)
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Abstractions

Force multiplying ideas: higher level examples

« Service (long running event handler)
 Job (process with a linear lifecycle)

* Feed (Job with an input document)

* Report (Job with an output document)
 Request (process a single request)
 Cron Job (run a periodic job)

docker
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An Interface

... probably many!

Users and other software compositions need some
means to interact with the orchestration platform.

* One or a collection of APIs
« Command Line Program
« Web or Native GUI
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System of Record

Managed state of the platform

Accounting for entities (container, pod, service,
volume, etc) and their state.

Commonly provide:

KV semantics

 Record observation (watches)

* Update / Delete semantics with fencing tokens
« Distributed locks

 HA with strong consistency (Paxos / Raft)
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Agents / Control Loops

API’s provide interfaces between the platform and users
or other tools.

Control loops are the platform’s automata.

« Passively react to state changes

 Manage system state based on active monitoring
* Might require leadership election for HA

docker
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Agents / Control Loops

Event driven agents that coordinate changes in the system

* Container (re)scheduler
e Cluster node registrar

« Service node registrar
 Low entropy network registrar
* Local supervisor / init

« Service controller

* Job controller

 Report workflow controller
 Feed workflow controller

* Distributed cron controller
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Patterns

Event driven agents that coordinate changes in the system

« State Observation
 Feedback for control loops

» Entity Lifecycle Graph

* Registration and Discovery
* Route to an IP
 Engine in a cluster
* Replica of a service
« Endpoint of a service
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Deep Dive: Cluster

Getting dirty

<insert illustration of a Swarm cluster>
<insert illustration of a Kubernetes cluster>
<insert illustration of a Mesosphere cluster>
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Deep Dive: Service

Even more examples

<tba>
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Demo a new abstraction:
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Failure Injection

A powerful and complex idea

Build confidence in complex distributed systems by injecting
realistic failures and comparing operations against a steady state.

« http:/lprinciplesofchaos.org
* Failure mode and effects analysis
* Netflix / SimianArmy
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Failure Injection

... and container based platforms

All container platforms (clustered or not):

* enable high-entropy systems

 add new components and failure modes

* provide new mechanisms for handling failure

___extension point, failure injection interface (the kernel), cross
cutting concern
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Project: Entropy

An orchestration abstraction for failure injection

Features:
* Probabilistic failure injection policies
* Failure modes
* Latency, partition, GC pause, etc
» Applied to existing containers filtered by label
 An event stream
* Notifications
* Integrates with the Docker API
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Project: Entropy

An orchestration abstraction for failure injection

Components:

 Microservice API

« CLI

* Policy manager (control loop)

» Failure injection agents (pluggable)

On GitHub: __ insert URL
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Demo Slide

$ # Container platform is running. Start a service.
$ docker-compose up -d -p election -f election.yml
$ # Start the entropy platform
$ docker-compose up -d -p entropy -f entropy.yml
$ # Define a policy
$ entropy -H $DOCKER _HOST run \

-f 1s -p .1 \

-t servicename=voter \

recv_drop
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Thank you!

Checkout:
github.com/buildertools/entropy




