Jeff
Nickoloff

Engineer, Author, and
Consultant

docker 16

About failure
Abstractions APls Architecture
Examples System of Record Break stuff

Agents

16

About Abstractions

High quality abstractions are force multipliers for communication and
reasoning about more complex (or potentially variable) ideas and
systems.

Using a computer or programming is an act of communication.

<tba> (Software that provides such an abstraction gives a user
amazing power.) Software like Docker.

docker

“Orchestrate (v):
to organize or plan
(something that is complicated).”

— Merriam-Webster

“Orchestrating (tv):
to arrange or combine so as to
achieve a desired or maximum effect.”

— Merriam-Webster

Orchestration Platform (Software)

(for orchestral music uses see Podium)

A system that provides organization and planning
abstractions for other abstractions.

In the OSS world we have:
« Swarm

 Kubernetes

« Mesosphere

docker 16

Orchestration Platform (Software)

(for orchestral music uses see Podium)

A system that provides organization and planning
abstractions for other abstractions.

In the OSS world we have:

 Docker + Swarm + Compose + etcd / consul / zk

 Docker + Flannel + Systemd + etcd + kubelet + kube (api, scheduler,
controller-manager, proxy, DNS)

 Mesos + Marathon + Calico + zk

docker 16

Abstractions

Force multiplying ideas: a few lower level examples

 Engine (runs containers)
» Cluster (nodes as an engine)
* Network (routing, overlay, etc)
* and network name resolution
 Volume (named sharable storage)

docker 16

Abstractions

Force multiplying ideas: higher level examples

« Service (long running event handler)
 Job (process with a linear lifecycle)

* Feed (Job with an input document)

* Report (Job with an output document)
 Request (process a single request)
 Cron Job (run a periodic job)

docker

16

An Interface

... probably many!

Users and other software compositions need some
means to interact with the orchestration platform.

* One or a collection of APIs
« Command Line Program
« Web or Native GUI

docker 16

System of Record

Managed state of the platform

Accounting for entities (container, pod, service,
volume, etc) and their state.

Commonly provide:

KV semantics

 Record observation (watches)

* Update / Delete semantics with fencing tokens
« Distributed locks

 HA with strong consistency (Paxos / Raft)

docker 16

Agents / Control Loops

API’s provide interfaces between the platform and users
or other tools.

Control loops are the platform’s automata.

« Passively react to state changes

 Manage system state based on active monitoring
* Might require leadership election for HA

docker

16

Agents / Control Loops

Event driven agents that coordinate changes in the system

* Container (re)scheduler
e Cluster node registrar

« Service node registrar
 Low entropy network registrar
* Local supervisor / init

« Service controller

* Job controller

 Report workflow controller
 Feed workflow controller

* Distributed cron controller

docker 16

Patterns

Event driven agents that coordinate changes in the system

« State Observation
 Feedback for control loops

» Entity Lifecycle Graph

* Registration and Discovery
* Route to an IP
 Engine in a cluster
* Replica of a service
« Endpoint of a service

docker 16

Deep Dive: Cluster

Getting dirty

<insert illustration of a Swarm cluster>
<insert illustration of a Kubernetes cluster>
<insert illustration of a Mesosphere cluster>

docker 16

Deep Dive: Service

Even more examples

<tba>

docker 16

Demo a new abstraction:

16

Failure Injection

A powerful and complex idea

Build confidence in complex distributed systems by injecting
realistic failures and comparing operations against a steady state.

« http:/lprinciplesofchaos.org
* Failure mode and effects analysis
* Netflix / SimianArmy

docker 16

Failure Injection

... and container based platforms

All container platforms (clustered or not):

* enable high-entropy systems

 add new components and failure modes

* provide new mechanisms for handling failure

___extension point, failure injection interface (the kernel), cross
cutting concern

docker 16

Project: Entropy

An orchestration abstraction for failure injection

Features:
* Probabilistic failure injection policies
* Failure modes
* Latency, partition, GC pause, etc
» Applied to existing containers filtered by label
 An event stream
* Notifications
* Integrates with the Docker API

docker 16

Project: Entropy

An orchestration abstraction for failure injection

Components:

 Microservice API

« CLI

* Policy manager (control loop)

» Failure injection agents (pluggable)

On GitHub: __ insert URL

docker 16

Demo Slide

$ # Container platform is running. Start a service.
$ docker-compose up -d -p election -f election.yml
$ # Start the entropy platform
$ docker-compose up -d -p entropy -f entropy.yml
$ # Define a policy
$ entropy -H $DOCKER _HOST run \

-f 1s -p .1 \

-t servicename=voter \

recv_drop
docker 16

Thank you!

Checkout:
github.com/buildertools/entropy

