
Sharding Containers

Andrey 
Sibiryov
SRE, Uber New York



The Problem
«It’s complicated» – 
John von Neumann.



 …and we can do better than this.

In Uber, we run more than a thousand microservices in production, 
written in different languages. At this scale and fanout, performance 
of each one of them matters. 

• The team I work on runs a very CPU and memory intensive 
Go service processing millions of requests per second. 

• We noticed that a relatively large slice of its run time is 
dedicated to doing useless things – GC, context switching, 
CPU stalling for memory access and so on.

It’s Not Fast Enough



…and unexpected numbers.
Benchmarks!

R
PS

0
40
80

120
160
200

nginx, 1000s go alloc go compute

188

98

179

9983

155

before magic after magic



Sockets, Cores, HTs & NUMA.

In just a few years, the modern hardware switched away from 
growing the CPU power to growing CPU cores and caches. 

• Massively multi-core, multi-socket, with deep cache 
hierarchies and cunning out-of-order execution pipelines. 

• Same code can have different latency and throughput even 
when running on the same CPU. 

• Also, almost nobody uses PMU, PEBS and so on except 
Brendan Gregg.

It’s Complicated



“Crooked Moore’s law 
doesn’t work anymore!”

— Donald T.



I: A Cryptic Diagram



II: A Cryptic Diagram



III: A Cryptic Diagram



Devices, Interrupts & Latency.

Growing gap between performance characteristics of different 
buses and components and multi-level caching end up introducing 
more and more hidden lag to all operations. 

• A single core in not capable of processing input from a NIC. 
• Some applications are even forced to switch to userspace-

based polling to achieve full performance. 
• Computers grow in complexity: adding queues, buffers & 

offload techniques at expense of transparency.

It’s Complicated



“Computers are networks-
on-a-chip, literally!”

— Donald T.



The “Solution”
The challenge of 
avoiding challenges.



…somebody already thought this through, right?

Modern language runtimes and VMs chose the way of least 
resistance in hope that OSes will take care of the complexity of the 
underlying hardware. You’ll never believe what happened next: 

• Golang Issue #14406 – «… GC makes sufficient accesses to 
memory to trick Linux's NUMA logic into moving physical 
memory pages to be closer to the GC workers». 

• <Maybe another example?>

Wishful Thinking



IV: A Cryptic Diagram



We’ve put a VM into your VM so you can stall while you stall.

Multi-layer abstractions, over-engineering and multiple indirections 
are the current trends of software development. The level of 
abstraction engineers work on now is as remote from real hardware 
as we are from planting potato on Mars right now. 

• VMs & transpilation, garbage collectors, abstract hardware 
models. 

• Running in multiple nested virtual machines with virtualized 
networking.

Wishful Thinking



The Workaround
Computer-Friendly 
Engineering.



Databases is not the only thing you can shard.

Shard (n.) – A shard is a horizontal partition of data in a database 
or search engine. Each shard is held on a separate server instance, 
to spread load. 

• In fact, we can shard whatever we want. 
• In fact, we already do this: load balancing is essentially 

sharding of your whole backend infrastructure.

Sharding



It’s not only for networks.

A load balancer distributes workloads across multiple computing 
resources, such as computers, a computer cluster or network links. 
It aims to optimize resource use, maximize throughput, minimize 
response time, and avoid overload of any single resource. 

• Normally, load balancers are used to distribute traffic across 
network nodes. 

• In fact, we can use a network LB to distribute load across 
physical CPU cores. 

Load Balancing



Tactics 101: use the terrain.

Network topology is the arrangement of the various elements 
(links, nodes, etc.) of a computer network. 

• In modern computers, each core is essentially a separate 
network node. 

• Docker supports CPU pinning. This way, we can spin up 
multiple instances of the same container and pin them to 
separate cores. 

• We can even pin linked components closer to each other.

Pinning



“Make programs 
computer-friendly again!”

— Donald T.



Let’s shard all the things!

Tesson is a tool that automatically analyzes your 
hardware topology to utilize it as much as possible by 
spawning & pinning multiple instances of your app 
behind a local load balancer. 

• Supports different granularities: core, NUMA 
node, etc. 

• Integrates with Gorb for seamless local load 
balancer setup & configuration.

Project Tesson

github://kobolog/tesson



Thank you!


