
Extending Docker with APIs,
Drivers, and Plugins
Anusha Ragunathan
Software Engineer, Docker
Arnaud Porterie
Sr. Engineering Manager, Docker

“Batteries included
but swappable”

— Anonymous

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Docker extension points
Level of effort

required

User-facing API

Plugins

Drivers

Small

Medium

High

The user-facing API
Extending through observation

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

User-facing API

User-facing API

Plugins

Drivers

Level of effort
required

Small

Medium

High

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

All interactions with Docker go through an HTTP/JSON API
The daemon listens by default on /var/run/docker.sock

User-facing API

Client (docker)

Network ls

Pull

Run

...

HTTP/JSON

Introduction

Daemon (dockerd)

/networks/

/images/create

/containers/create

...

Listen on tcp:8080, print to stderr, and write to daemon’s default socket.
$> socat -v TCP4-LISTEN:8080,fork UNIX-CLIENT:/var/run/docker.sock

From another terminal (DOCKER_HOST informs the client where to connect to):
$> DOCKER_HOST=”tcp://localhost:8080” docker version
GET /v1.23/version HTTP/1.1
User-Agent: Docker-Client/1.11.2 (linux)

HTTP/1.1 200 OK
Content-Type: application/json

{"Version":"1.11.2","ApiVersion":"1.23","GitCommit":"b9f10c9", … }

User-facing API
Example interaction

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

User-facing API
The events endpoint

● The /events endpoints is powerful for automation

● Gives live external visibility on every operation the daemon is doing
○ Action (e.g., container creation)
○ Context (e.g., image, container ID)

Start listening to events (this command doesn’t return).
$> docker events

From another terminal:
$> docker run --rm --name test busybox true
<timestamp> container create 439c5aa3 (image=busybox, name=test)
<timestamp> container attach 439c5aa3 (image=busybox, name=lonely_chandrasekhar)
<timestamp> network connect 9bddd27d (container=439c5aa3, name=bridge, type=bridge)
<timestamp> container start 439c5aa3 (image=busybox, name=test)
<timestamp> container die 439c5aa3 (exitCode=0, image=busybox, name=test)
<timestamp> network disconnect 9bddd27d (container=439c5aa3, name=bridge, type=bridge)
<timestamp> container destroy 439c5aa3 (image=busybox, name=test)

The events endpoint
User-facing API

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Extending using the events endpoint

● Example use case: Interlock (github.com/ehazlett/interlock)
○ Event driven plugin system
○ Routes events to extensions, such as HAProxy

● The first Docker load-balancer
○ Drop-in solution that runs as a container and listens for events
○ Requires absolutely no change to Docker itself

User-facing API

https://github.com/ehazlett/interlock
https://github.com/ehazlett/interlock/blob/master/docs/extensions/haproxy.md

Plugins
Past, present, and future

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Plugins

User-facing API

Plugins

Drivers

Level of effort
required

Small

Medium

High

● A process external to the docker engine that extends functionality of the
docker engine.
○ Plugins available for volumes, networks and authorization subsystems.
○ Implements well defined plugin API for the specific subsystem.
○ Extend single node functionality or across the cluster.
○ Introduced in Docker 1.8

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Plugins
What are plugins?

Plugin Docker Engine Container
JSON RPC over
HTTP

Subsystem
operations

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Characteristics Challenges in the past

Highly available services Lack of boot ordering. No standard way to
start containers before plugins.

Powerful distribution channels Lack of streamlined discovery and
distribution channels leads to customer
confusion.

Defined/predictable runtime behavior Lack of specification that defines plugin
behavior.

Plugins

● Challenges resolved
○ Plugin distribution via the new Docker Store!
○ Plugins start and stop alongside docker engine (highly available)
○ Plugin behavior clearly defined in a plugin manifest specification.

● Experimental support in 1.12 (API, manifest spec subject to change)

All of the above plugin management and more via your
favorite docker CLI/API !

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

New plugin infrastructure
Plugins

● Sample plugin: tiborvass/no-remove
○ Simple extension of local volume driver
○ Volume plugin API: Create, Remove, Mount, Unmount, List, ...
○ Implements a variation of Remove

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

New plugin infrastructure
Plugins

$> docker plugin install tiborvass/no-remove
Plugin “tiborvass/no-remove” is requesting the following privileges:
- network: [host]
- mount: [/data]
- device: [/dev/cpu_dma_latency]
Do you grant the above permissions? [y/N] y

$> docker plugin ls
NAME TAG ACTIVE
tiborvass/no-remove latest true

$> docker plugin disable tiborvass/no-remove
NAME TAG ACTIVE
tiborvass/no-remove latest false

Plugins
New plugin infrastructure

$> docker plugin inspect tiborvass/no-remove
"Manifest": {
 "Description": "A test plugin for Docker",
 "Documentation": "https://docs.docker.com/engine/extend/plugins/",
 "Interface": {
 "Types": [
 "docker.volumedriver/1.0"
],
 },
 "Network": { "Type": "host" },
 "Mounts": [
 {

 "Source": "/data",
 "Destination": "/data",
 "Type": "bind"

 }]
}

New plugin infrastructure
New plugin infrastructure

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Plugins
Future improvements
● Per node plugins

○ Stable support in 1.13.
● Swarm-deployed plugins

○ In 1.13:
■ Plugin deployment will be across the swarm and managed by the

orchestrator.
■ Relies on the same plugin infrastructure under the hood.

○ Beyond 1.13, customizing orchestration through plugins is possible
■ E.g., placement strategies
■ E.g., scheduling modes

Drivers
Execution backend drivers

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Drivers

User-facing API

Plugins

Drivers

Level of effort
required

Small

Medium

High

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

OCI compatible runtimes

● OCI Runtime specification
○ Currently in 1.0.0-RC1
○ Defines an industry standard interface for runtimes

Execution backend

containerd (containerd.tools)
A daemon to control and supervise

OCI compatible runtimes

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Introducing containerd and runC
Execution backend

runC (runc.io)
A tool for running containers

according to the OCI specification

https://containerd.tools/
http://runc.io/

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

As of Docker 1.11, the Engine relies on containerd and runC to run containers

Execution backend

Client (docker)

Network ls

Pull

Run

...

Overview

Daemon (dockerd)

/networks/

/images/create

/containers/create

...

Containerd

r
u
n
C

r
u
n
C

r
u
n
C

gRPC f
o
r
k

An arbitrary collection of runtimes can be specified to the daemon.
$> dockerd --add-runtime custom=/bin/my_runtime

$> docker info | grep Runtimes
Runtimes: default custom

All Docker installations have a system-specific default runtime (runC on Linux).
Docker can be instructed to use a different runtime on a per-container basis.
$> docker run --runtime=default busybox true
$> docker run --runtime=custom busybox true

The default runtime can be replaced at the daemon level.
$> dockerd --add-runtime custom=/bin/my_runtime --default-runtime=custom

Example interaction
Execution backend

● Platform specific runtimes
○ Solaris runZ

● Different workloads, different performance/security tradeoffs
○ Intel Clear Containers
○ Hyper_ runV (hypervisor-based runtime)

● What will the community invent next?

(NOTE: PASTE IN PHOTO AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Use cases for customizing the execution backend
Execution backend

https://clearlinux.org/features/clear-containers
https://github.com/hyperhq/runv

Key takeaways

Extension point Level of effort Key takeaways

User-facing API Small Learn what the Docker API offers
Automate and extend by hooking into the API

Plugin infrastructure Medium Try the new plugin infrastructure in Docker 1.12
Build and distribute your own plugins

Drivers High Explore how to implement an execution backend in
your favorite platform

Thank you!

