
Securing the Container Pipeline

Cem
Gürkök
Lead InfoSec Engineer

(NOTE: PASTE IN PORTRAIT AND SEND BEHIND
FOREGROUND GRAPHIC FOR CROP)

Securing the Container Pipeline

Cem Gürkök
Lead InfoSec Engineer
Salesforce
@CGurkok

Agenda
•  Threats
•  Container pipelines and integrity
•  Monitoring containers, hosts, apps, networks
•  Digital Forensics
•  Vulnerability Management
•  Hardening
•  Demo

Threats

Container Threats & Challenges
​ Run-time
• Container exploit and resource exposure (App)
• Breaking out of container
• Cross-container attacks
• Resource overuse (DoS)

​ At-rest or transport
• Tampering of images
• Unpatched OS or applications

Mitigations

“As we know, there are known knowns; there are things we know we

know. We also know there are known unknowns; that is to say we know

there are some things we do not know. But there are also unknown

unknowns—the ones we don’t know we don’t know.”
— Donald Rumsfeld

Securing the Pipeline

Docker
Security

Platform
Security

Access
Controls

Content
Security

Monitoring
and

Response

The Pipeline

Container Pipeline & Security
Base OS

and
Docker

File

Base OS
Image

DEV
Docker
Trusted

Registry +
Notary

Developer
RelEng
Image

DEV
Docker
Trusted

Registry +
Notary

Continuous
Integration

PROD
Docker
Trusted

Registry +
Notary

Running
in PROD

Monitoring in all steps.
1.  Security Review and Hardening
2.  Signing, Authentication, Image

Vulnerability Scans
3.  Authentication, Verification
4.  Signing, Authentication, Image

Vulnerability Scans
5.  Authentication
6.  Authentication, Verification
7.  Authentication, Verification,

Vulnerability Scans
8.  Incident Response, Digital Forensics,

Patching

Access Control: Authentication

•  LDAP over SSL for Docker image transactions:
•  Users (Devs, RelEng)
•  Service accounts

•  Mutual TLS Authentication for registry replication

Dev Systems

Dev Registry

Build & Test

Master Registry

Prod Registry

DMZ Services

TLS

Container Integrity

​ Docker Trusted Registry (DTR)
•  On-premise

•  Authenticated transactions with LDAPS
authentication

•  DEV and PROD user and image separation

•  Users will not be able to disable signing validation

•  Validation will be transparent to the users

Container Integrity
​ Docker Notary

•  Enable Docker Content Trust on consumers

•  Can enable signing checks on every managed host

•  Signature verification transparent to users

Build & Test

Notary Master

DMZ Services

Prod Services

Sign

Validate

Validate

Master Docker
Registry

DEV

DMZ

Notary
Master

LDAPS Auth
Notary Signing

Dev Docker Registry

PROD

Mirrored Read-only
Registry or Caching
Proxy

Docker packaged services

Mutual TLS Auth
HTTPS Pull

Validate

Dev Systems

LDAPS user acct
HTTPS Push to Dev
Authenticated pulls

LDAPS Auth
HTTPS Push
and Sign

HTTPS Pull
Sign

LDAPS Auth
HTTPS Push
Already Signed

Docker packaged
services in DMZ

HTTPS No
Auth Pull

Validate

RelEng
promotes
to DMZ

Release case

* Andrey Falko, Salesforce

Ticketing
System

Hardening

Hardening: Host
•  Frequent patching

•  Install only needed components and libraries (i.e. no
gcc or bash)

•  Grsecurity/PaX for the kernel

•  File system integrity monitoring

•  Leverage Linux isolation capabilities!!

Hardening: Container

•  Base image and app with latest updates/patches

•  Leverage User namespaces (run as low priv user on
host)

•  Install only needed components and libraries (i.e. no
gcc or ssh)

Hardening: Container

•  Avoid using Docker with the --privileged flag

•  Use --read-only when running containers (immutability)

•  Avoid providing access to the docker user and group

•  Limit and/or separate host and kernel device access

Hardening: Docker Bench for Security

•  Docker Bench for Security
to the rescue!

• https://github.com/docker/
docker-bench-security

•  Checks based on best
practices for hosts and
containers

* https://github.com/docker/docker-bench-security

Hardening: Vulnerability Management
​ Image Scans with tools, such as Docker
Security Scanning:
• Operating System
• Application source code and libraries

​ Network Scans with traditional vuln
scanners:
• Discovery
• Exposed services

​ Auto and Manual source code audits

* “Securing the Software Supply Chain with Docker, ” May 2016, Nathan McCauley

Hardening: Vulnerability Management

•  Scanning
•  Docker Images
•  Applications

•  Remediation

•  Prioritization and SLAs for Patching

•  Relaunching containers after patching

Δt

Monitoring

Network Infrastructure

•  Bridged networking on Host

•  Containers assigned VNICs, IP
addresses, and hostnames

•  Containers isolated via VLANs
(i.e. DB, Web App)

•  Tap interface for monitoring

•  Security Policies per VLANs
and Zones

Network Infrastructure

Monitoring: Network

​ Network traffic captured for:
• Inter-container communications
• Host communications
• Resource communications (i.e. DB,
Public Internet)

​ Network traffic sent to:
• IDS (Intrusion Detection System)
• Netflow generator
• Output sent to SIEM for analysis

Monitoring: Hosts

​ Logs:
• All host logs are saved
• SIEM agents consume and forward the logs from hosts
• Monitoring, Dashboarding, Alerting at SIEM

Host SIEM

Monitoring: Containers & Apps

•  Logs are monitored similar to host

•  OS + Application logs

•  Network activity monitoring

•  IP address assignments
•  Netflows
•  IDS (Intrusion Detection System)
•  Raw Network Traffic Capture

Monitoring: Host, Containers & Apps

​ Disk activity monitoring
• File system integrity
• Run time layer monitoring

​ Memory monitoring
• Docker and container process activity
• Process integrity: Engine + Container

Digital Forensics

Digital Forensics

•  Incident Response Plan/Policies

•  Live/Post-mortem Memory Forensics

•  Disk Forensics

•  Network Monitoring/Forensics

Disk Forensics
•  Build supertimeline to have integrated view of events

•  Data Sources:
•  Raw Disk Image
•  Log Files
•  Binaries

•  Tools
•  The Sleuth Kit: File system analysis
•  Plaso: Build supertimeline
•  dd: Raw disk image

dd
Sleuth Kit

Plaso

Memory Forensics

Why Memory Forensics?
• Nothing can hide in memory!
• Faster artifact discovery vs. disk forensics

Memory Forensics
​ Analyze host memory
• Live /dev/*mem
• VM memory file
• Memory dump/sample

​ Tools:
• Analysis (most OS and sample format):
• The Volatility Framework

• Memory sampling on Linux: LiME, linpmem

LiME
linpmem

Memory Forensics: Process Hierarchy
•  pstree_hash [new]: View Docker

processes in a tree view based on
the PID hash table vs. linked list

•  Use case: Detect rogue or injected
child processes/containers

Memory Forensics: Temporary File Systems

•  tmpfs: lists and recovers tmpfs file systems from memory
•  Use case: monitor file systems

Memory Forensics: Loaded Libraries

•  linux_proc_maps: shows process memory maps, their permissions
and original file paths (executable and libraries)

•  Use case: Detect Shared Library Injections

Memory Forensics: Process Integrity

•  process_compare [new]: Detect if user space binary has
been tampered with in memory (in memory binary vs. on
disk) [5]

•  Works when binary symbols can’t be extracted

Summary

Platform
Security

Isolation

Hardening

Best Practices

Vulnerability
Scans

Content
Security

Registry

Notary

Image/Code
Signing

Image/Code
Scanning

Access
Controls

LDAPS

User
Authentication

System
Authentication

Monitoring
and

Response
IR Plan &
Testing

Vulnerability
Management

Network

Logs

Forensics

thank y u

References
1.  “CIS Docker 1.6 Benchmark,” Center for Internet Security

2.  “Introduction to Container Security,” Docker.com

3.  “Understanding and Hardening Linux Containers,” NCC Group

4.  “The Volatility Framework,” https://github.com/volatilityfoundation/volatility

5.  “Identifying the Unknown in User Space Memory,” Andrew White

6.  “LiME,” https://github.com/504ensicsLabs/LiME

7.  “linpmem,” http://www.rekall-forensic.com/docs/Tools/

8.  “The Sleuth Kit,” http://www.sleuthkit.org/

9.  “Plaso,” https://github.com/log2timeline/plaso

