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Agenda 
•  Threats 
•  Container pipelines and integrity 
•  Monitoring containers, hosts, apps, networks 
•  Digital Forensics 
•  Vulnerability Management 
•  Hardening 
•  Demo 



Threats 



Container Threats & Challenges 
​ Run-time 
• Container exploit and resource exposure (App) 
• Breaking out of container 
• Cross-container attacks 
• Resource overuse (DoS) 

​ At-rest or transport 
• Tampering of images 
• Unpatched OS or applications 



Mitigations 



“As we know, there are known knowns; there are things we know we 

know. We also know there are known unknowns; that is to say we know 

there are some things we do not know. But there are also unknown 

unknowns—the ones we don’t know we don’t know.” 
— Donald Rumsfeld 
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The Pipeline 
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Access Control: Authentication 

•  LDAP over SSL for Docker image transactions: 
•  Users (Devs, RelEng) 
•  Service accounts 

•  Mutual TLS Authentication for registry replication 
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Container Integrity 

​ Docker Trusted Registry (DTR) 
•  On-premise 

•  Authenticated transactions with LDAPS 
authentication 

•  DEV and PROD user and image separation 

•  Users will not be able to disable signing validation 

•  Validation will be transparent to the users 



Container Integrity 
​ Docker Notary 

•  Enable Docker Content Trust on consumers  

•  Can enable signing checks on every managed host 

•  Signature verification transparent to users 
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Hardening 



Hardening: Host 
•  Frequent patching 

•  Install only needed components and libraries (i.e. no 
gcc or bash) 

•  Grsecurity/PaX for the kernel  

•  File system integrity monitoring 

•  Leverage Linux isolation capabilities!! 



Hardening: Container 

 

•  Base image and app with latest updates/patches 

•  Leverage User namespaces (run as low priv user on 
host) 

•  Install only needed components and libraries (i.e. no 
gcc or ssh) 



Hardening: Container 

•  Avoid using Docker with the --privileged flag 

•  Use --read-only when running containers (immutability)  

•  Avoid providing access to the docker user and group  

•  Limit and/or separate host and kernel device access 



Hardening: Docker Bench for Security 

•  Docker Bench for Security 
to the rescue! 

• https://github.com/docker/
docker-bench-security 

•  Checks based on best 
practices for hosts and 
containers 

* https://github.com/docker/docker-bench-security 

 



Hardening: Vulnerability Management 
​ Image Scans with tools, such as Docker 
Security Scanning: 
• Operating System 
• Application source code and libraries 

​ Network Scans with traditional vuln 
scanners: 
• Discovery 
• Exposed services 

​ Auto and Manual source code audits 

*  “Securing the Software Supply Chain with Docker, ” May 2016, Nathan McCauley  



Hardening: Vulnerability Management 

•  Scanning 
•  Docker Images 
•  Applications 

•  Remediation 

•  Prioritization and SLAs for Patching 

•  Relaunching containers after patching 

Δt 



Monitoring 



Network Infrastructure 

•  Bridged networking on Host 

•  Containers assigned VNICs, IP 
addresses, and hostnames 

•  Containers isolated via VLANs 
(i.e. DB, Web App) 

•  Tap interface for monitoring 

•  Security Policies per VLANs 
and Zones 

 



Network Infrastructure 



Monitoring: Network 

​ Network traffic captured for: 
• Inter-container communications 
• Host communications 
• Resource communications (i.e. DB, 
Public Internet) 

​ Network traffic sent to: 
• IDS (Intrusion Detection System) 
• Netflow generator  
• Output sent to SIEM for analysis 



Monitoring: Hosts   

​ Logs: 
• All host logs are saved  
• SIEM agents consume and forward the logs from hosts 
• Monitoring, Dashboarding, Alerting at SIEM 

Host SIEM 



Monitoring: Containers & Apps 

•  Logs are monitored similar to host 

•  OS + Application logs  

•  Network activity monitoring 

•  IP address assignments 
•  Netflows 
•  IDS (Intrusion Detection System) 
•  Raw Network Traffic Capture 



Monitoring: Host, Containers & Apps 

​ Disk activity monitoring 
• File system integrity 
• Run time layer monitoring 

​ Memory monitoring 
• Docker and container process activity 
• Process integrity: Engine + Container 



Digital Forensics 



Digital Forensics 

•  Incident Response Plan/Policies 

•  Live/Post-mortem Memory Forensics 

•  Disk Forensics 

•  Network Monitoring/Forensics 

 



Disk Forensics 
•  Build supertimeline to have integrated view of events 

•  Data Sources: 
•  Raw Disk Image 
•  Log Files 
•  Binaries 

•  Tools 
•  The Sleuth Kit: File system analysis 
•  Plaso: Build supertimeline 
•  dd: Raw disk image  

dd 
Sleuth Kit 

Plaso 



Memory Forensics 

Why Memory Forensics? 
• Nothing can hide in memory! 
• Faster artifact discovery vs. disk forensics 



Memory Forensics 
​ Analyze host memory 
• Live /dev/*mem 
• VM memory file 
• Memory dump/sample 

​ Tools: 
• Analysis (most OS and sample format):  
• The Volatility Framework 

• Memory sampling on Linux: LiME, linpmem 

LiME 
linpmem 



Memory Forensics: Process Hierarchy 
•  pstree_hash [new]: View Docker 

processes in a tree view based on 
the PID hash table vs. linked list 

•  Use case: Detect rogue or injected 
child processes/containers 



Memory Forensics: Temporary File Systems 

•  tmpfs: lists and recovers tmpfs file systems from memory 
•  Use case: monitor file systems 



Memory Forensics: Loaded Libraries  

•  linux_proc_maps: shows process memory maps, their permissions 
and original file paths (executable and libraries) 

•  Use case: Detect Shared Library Injections 



Memory Forensics: Process Integrity 

•  process_compare [new]: Detect if user space binary has 
been tampered with in memory (in memory binary vs. on 
disk) [5] 

•  Works when binary symbols can’t be extracted 
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thank y   u 
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