
Efficient Parallel Testing with Docker

Laura
Frank
Engineer, Codeship

1. Parallel Testing: Goals and Benefits
2. DIY with LXC

3. Using Docker and the Docker Ecosystem

Agenda

Parallel Testing

Create a customizable, flexible test
environment that enables us to run

tests in parallel

GOAL

• Deploy new code faster
• Find out quickly when automated steps fail

If you’re still not sure why testing is important, please talk to me at
the Codeship booth.

Why?

• For local testing, e.g. unit and integration tests run by a
development team

• On internal CI/CD systems
• As part of a hosted CI/CD solution (like Codeship)

Where?

• Performance optimization for serial testing tasks is
limited

• Split up testing tasks
• Use containers to run multiple tests at once

How?

Run tasks across multiple processors
in parallel

computing environments

TASK PARALLELISM

Distributed Task Parallelism
A distributed system of containerized computing
environments takes the place of a single multiprocessor
machine

A container is a process, not a small VM

Spend less time waiting around for your builds to finish.

• Ship newest code to production faster
• Be alerted sooner when tests fail

Goal: Shorter Feedback Cycles

Developers should have full autonomy over testing
environments, and the way tests are executed.

• Move testing commands to separate pipelines
• Designate commands to be run serially or in parallel
• Declare specific dependencies for each service

Goal: More User Control

Why not VMs?
• Isolation of running builds on infrastructure
• Challenges with dependency management
• No clean interface for imposing resource limits
• Infrastructure is underutilized which makes it expensive

Containers, duh!
• Impose resource limits and utilize infrastructure at higher

capacity
• Run customer code in isolation
• Provide consistent build environment across many build runs

• Run testing tasks in parallel 👍

DIY with LXC

Codeship has been powered by containers
since the very beginning

Flowing salty water on Mars
International Year of Forests

Preparations ahead of 12.04 Precise release shipped to support
LXC improvements

Codeship was founded
Green Bay Packers won Super Bowl XLV

2011: A Brief History Lesson

I should use LXC…

Why LXC?
• Impose resource limits and utilize infrastructure at

higher capacity
• Run customer code in isolation
• Provide consistent build environment across many build runs
• Enable parallel testing jobs

• Can programmatically automate creation and deletion

Checkbot (Codeship Classic)
• Still running in production as our classic infrastructure
• Well-suited for users who want 1-click test environments without

much customization
• Compromise flexibility for ease of use

Checkbot

39K builds per day
7.8M builds per year

Architecture
• Universal Container with provided dependencies
• Run builds in isolation from one another
• Implement parallel testing pattern using pipelines with

ParallelCI
• Users can have N pipelines running in isolation during a

build

User Commands

Universal Container

Pipeline

User Commands

Universal Container

Pipeline

Heroku

Deployment Provider

Capistrano

AppEngine

Elastic Beanstalk

etc…

Limitations
• Parity between dev and test
• Can’t really debug locally
• No useable interface between user and container
• Resource consumption is too high

While using straight-up LXC solved some of
our technical problems, it didn’t solve any of

our workflow problems

We weren’t able to provide the
best, most efficient product to
our customers (or ourselves)

Using Docker and the
Docker Ecosystem

Create a customizable, flexible test
environment that enables us to run

tests in parallel

GOAL

Big Wins with Docker
Even before 1.0, Docker was a clear choice

• Support and tooling
• Standardization
• Community of motivated developers

Using Docker allowed us
to build a much better testing platform

than with LXC alone

Codeship Jet

A Docker-based Testing Platform
• Development started in 2014
• First beta in 2015
• Official launch February 2016

A Docker-based Testing Platform

Built with Docker

in order to support Docker workflows

Codeship Jet

2.3K builds per day
~250K total builds

Why Docker?
• Docker Compose: service and step definition syntax
• Docker Registry: storage for images; remote caching*
• Docker for Mac and Windows: give users ability to reproduce

CI environments locally

*not for long!

Docker Compose
• Provides simplicity and a straightforward interface
• Developers can use existing docker-compose.yml files

with Codeship
• Ensure parity in dev, test, and production
• Use similar syntax for testing step definitions to get users up

and running faster

The workflow tools provided by
Docker are indispensable

Parallel Testing
with Docker

Managing containers with
Docker allowed us to improve our

parallel testing workflow

A New Parallel Workflow
• Introducing services adds additional layer of flexibility
• Loosen coupling between steps and services — execute N

steps against M services
• Parallel and serial steps can be grouped and ordered in any

way

Services
• Pull image from any registry or build from Dockerfile
• Optimize service for testing tasks
• Fully customizable by the user

Steps
• Each step is executed in an independent environment
• Can be nested in serial and parallel groups
• Two functions

• Run: execute a command against a service
• Push: push image to registry

• Tag regex matching to run steps on certain branches or
tagged releases

User Commands

Universal Container

Pipeline

User Commands

Universal Container

Pipeline

User Commands

Universal Container

Pipeline

T1 T1 T1

Step

po
st

gr
es

re
di

s

command

web

Step
po

st
gr

es

re
di

s
command

web

Step

command

ruby Step

po
st

gr
es

re
di

s

command

web

T1 T2 T3

codeship-services.yml

db:
 image: postgres:9.5

app:
 encrypted_dockercfg_path: dockercfg.encrypted
 build:
 image: user/some-image
 dockerfile: Dockerfile.test
 cached: true
 links:
 - db
deploy:
 encrypted_dockercfg_path: dockercfg.encrypted
 build:
 dockerfile: Dockerfile.deploy

codeship-steps.yml

- type: serial
 steps:
 - type: parallel
 steps:
 - name: rspec
 service: app
 command: bin/ci spec
 - name: rubocop
 service: app
 command: rubocop
 - name: haml-lint
 service: app
 command: haml-lint app/views
 - name: rails_best_practices
 service: app
 command: bin/railsbp

 - service: deploy
 type: push
 image_name: rheinwein/notes-app
 tag: ^master$
 registry: https://index.docker.io/v1/
 encrypted_dockercfg_path: dockercfg.encrypted

ProTip: Your push or deploy step should
never be part of a parallel step group

Demo!

Docker for Mac and Windows
• All users can test locally
• Jet CLI is available at http://bit.ly/codeship-jet-tool
• Don’t have a Docker for Mac/Windows invitation yet? Totally

cool, Docker Toolbox also rocks
• HUGE advantage over our previous LXC implementation

Engineering
Challenges

Infrastructure
Build allocation

• Customers can choose specs for their build machines
• Machine provisioning used to be part of

the build process
• Now we pool build machines
• Allocation time is ~1 second!

Performance
Image Caching

• Old way: rely on the registry for caching
• A pull gave us access to each parent layer; rebuilding the

image used the local cache
• 1.10 content addressable breaking change

Performance
Image Caching

• Great news: 1.11 restores parent/child relationship when
you save the images via docker save

• ETA: 1 month
• Double-edged sword of relying on external tools
¯_()_/¯

What’s Next?

Docker Swarm
• Jet was born pre-Swarm
• We manage build machines on AWS via our

own service
• Previous concerns about security — single tenancy
• Swarm (and services like Carina) are

promising for the future

libcompose
• Currently use APIs directly for container-level operations (Jet

was also born before Fig was popular)
• Minimal change for our users and builds, but much

easier for our engineers
• Preliminary work has been completed

(thanks Brendan!)

You can create a highly efficient
parallel testing platform with LXC

alone, but using Docker tools makes it
better

TL;DR

Thank you!

