
Making Friendly Microservices

Michele 
Titolo
Lead Software Engineer, 
Capital One



Definition:
/microservice/
Small service that does one thing well

Independent

Own its own data




Definition:
/friendly/
Helpful 

An ally

Kind

Easy to use, understand

Able to coexist without causing harm



What Makes A 
Microservice…
Helpful, An Ally, Kind, Easy to Use, 

Able to Coexist



Helpful



Documentation 
Documentation 
Documentation



Version And  
Revision History
Historical record of when things changed 
and why



Live Documentation



Document 
Dependencies





Create A  
Dependency Graph
use docker_image -t



Autogenerate 
Documentation



Open Source Tools
Open API Specification/Swagger

APIBlueprint

RAML



Open Api Spec



Api Blueprint



RAML



Ally



Integrate 
Monitoring Tools



Log All The Things
Use unique request IDs so logs are easier 
to sort through



Avoid Playing  
Red Light Green Light



What Happens When 
A Dependency Fails?



Hint:  
Your Service Should 
Not Go Down



Macro Dependencies
Micro Dependencies



Help Identify 
Bottlenecks 
Before They Happen



Communication



Gather Data



Tools
Docker

Atlas

Zipkin



Docker



Atlas



Zipkin



Kind



Make Your Service 
Easy To Deploy  
And Scale



Consumers Should Be 
Able To Hit The API 
Directly In A Non-Prod 
Environment



Consistent Error 
Messaging



HTTP/1.1 
206 Partial Content



Do Not Make Others 
Setup A Development 
Environment To 
Troubleshoot Issues



Tools
Docker

Jenkins

Capistrano



Docker



Containers
Each service should stand alone

Use docker_compose for dependencies

Use depends_on to bring up multiple 
services



Use Containers 
For Local 
Development



Jenkins



Capistrano



Easy To Use



Use One Base URL 
For Everything



Use An API Gateway 
Or Load Balancer To 
Route API Calls



Be Security 
Conscious



Cookie Security
Don’t use wildcards

Always use HTTPS and Secure

Set correct domain



Mobile Security
SSL Certificate Pinning



Tools
Zuul

NGINIX

HAProxy




Zuul



NGINIX



HAProxy



Coexist



Consistency 
Conventions



How Does Your 
Service Fit In With 
The Rest?



Services Need To 
Work Together



Don’t Take Single 
Responsibility 
Too Far





Assumptions



Tools



Microservice 
Discovery



API Discovery





The Friendly 
Microservice
Helpful Documentation

Built With Monitoring And Troubleshooting In Mind

Easily Deployable

Easy To Consume

Coexists With Established Conventions




Thank you!



Resources
• https://opencredo.com/rest-api-tooling-review/


• http://www.capitalone.io/blog/delivering-microservices-for-enterprise-with-devops/


• https://medium.com/capital-one-developers/mobile-orchestration-innovation-on-
the-edge-9835e4cbd69e#.vpbsiyqmq


• http://swagger.io/open-source-integrations/


• https://en.wikipedia.org/wiki/List_of_HTTP_status_codes


• https://www.owasp.org/index.php/Testing_for_cookies_attributes_(OTG-
SESS-002)


• http://www.onegeek.com.au/articles/waiting-for-dependencies-in-docker-compose


• http://techblog.netflix.com/2014/12/introducing-atlas-netflixs-primary.html



Photo Credits
• https://unsplash.com/photos/h13Y8vyIXNU


• https://unsplash.com/collections/380/petunia-the-pug


• https://www.flickr.com/photos/32179495@N04/21211072432/


• https://www.flickr.com/photos/78134717@N08/7154609638


• https://www.flickr.com/photos/33622296@N04/5870006633/


• https://www.flickr.com/photos/7255089@N05/5415983081


• https://www.flickr.com/photos/95477820@N02/8730925814


• https://www.flickr.com/photos/35137530@N00/16406998986/


